FRB

Exposed passive chilled beam for suspended installation

QUICK FACTS

- FRB is a passive chilled beam for comfort cooling especially designed for visible/suspended installation in the room.
- High cooling capacity, even when there is a large difference in temperature between the coolant supply and the return temperature.
- A small, compact unit available in two widths.

Cooling capacity					
Size $P_k(W/m)$ ΔT_{mk} °C					
FRB 430	252 W/m	10			
FRB 290	160 W/m	10			

Length: From 1.2 to 3.9 m. Width: 290 and 430 mm. Height: 123 and 133 mm.

FRB

Contents

Technical description	3
Advantages of FRB	
Installation	4
Range available on order	4
Function	4
Assembly	4
Sizing	6
Cooling	
Circulation air openings	
Example FRB 430	10
Dimensions	11
Specification	12
Limits of contract	12
Product	12
Accessories	13
Evolunatory toyt	12

Technical description

Advantages of FRB

- FRB is a very compact passive chilled beam. The low build-in height, choice of two widths, plus the fact that water is used as an energy transfer medium, means that the system requires a minimum of space.
- The high performance of this chilled beam means that it maintains high cooling capacity even at low $\Delta t_{mk'}$ thus making it possible to increase the temperature difference between the flow and return. This gives the product good operating properties and high output efficiency.
- FRB is specially designed for suspended installation. The softened form of the beam means that it blends into the room environments in a natural way.
- FRB is particularly suitable for areas where heating and ventilation have already been installed, and require supplimentary cooling.
- The system has no moving parts, generates no sound and is maintenance free.
- Connection details and valves are easily covered by a neat connection cover. The cover is mounted after that the beam is hanged and connected.

Cooling

Application

Suitable for all types of room that are cooled with a water based system:

- Offices (cellular offices and open)
- Hotels
- Class rooms
- Conference rooms
- Computer rooms
- Restaurants
- Banks
- Shops

Installation

FRB is designed for suspended installation.

Connection dimensions:

Cooling (water): plain pipe ends Cu Ø12 x 1.0 mm.

Suspension:

The units are equipped with mounting brackets designed for the SYST MS M8 assembly set. The assembly sets are available in various variants to fit various suspended distances. The SYST MS M8 must be specified and ordered separately.

Standard product range held in stock

For particulars of the standard product range held in stock, visit www.swegon.com.

Range available on order

Width: 290 and 430 mm.

Length: From 1.2 to 3.9 in increments of 300 mm.

Colour: RAL 9003 gloss value 30±6%.

Design: With horizontal connection at the end-H or with

the 300 mm connection area and internal

connections -I.

Special models Colour

FRB is available on request in optional colours.

Function

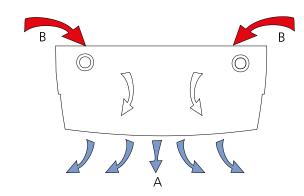


Figure 1. Cooling.A = chilled airB = warm room air

Assembly

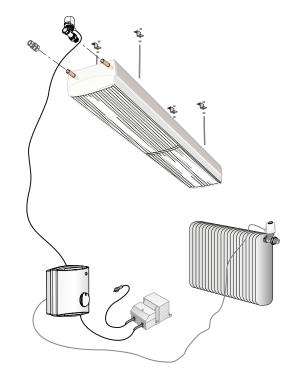


Figure 2. Assembly.

Figure 3. Maintenance, sliding lower section.

Accessories

Connection cover

The connection cover is fitted over the extended section of the chilled beam to conceal the pipe connections.

Flexible connection hose

Flexible hose with either quick connect couplings at both ends for connection to Ø12x1.0 mm pipes or with quick connect coupling at one end and a male thread G20ID for connection to a valve at the other end. Supplied individually.

SYST MS M8 assembly set

The assembly set for suspended installation consists of threaded rods of different length (200; 500 and 1000 mm). Specify the length desired to meet site design requirements. The set also contains plastic sleeves to make the installation more attractive. The necessary ceiling brackets, nuts and washers are included in the supply.

Extended connection pipe

Pipe extension with compression ring coupling at one end for connection to the chilled beam. Supplied in pairs.

Accessories

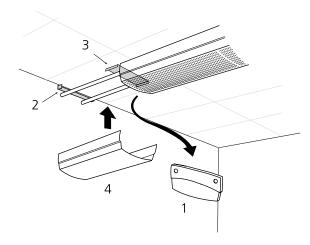


Figure 4. Cover for connection against a wall.

- 1. Dismount the plastic end cover of the beam.
- 2. Fasten the wall attachment to the wall.
- 3. Insert the attachment plate on the top of the beam.
- 4. Fit the cover into the wall attachment and to the beam. Lock the position of the cover with the attachment plate by pushing the plate back.

Sizing

Cooling

The cooling capacity is measured according to EN 14 518 and is calculated for a constant water flow according to Diagram 2.

Diagram 1. The function between the cooling capacity $P_{L}(W)$, temperature change $\Delta T_{L}(^{\circ}C)$ and cooling water flow q_{ν} (I/s).

Diagram 2. The function between the cooling capacity $P_{\nu}(W)$ and the cooling water flow $q_{\nu}(I/s)$. Different water flow rates affect the output capacity, to a certain degree. By checking the obtained water flow value using diagram 2 the documented capacities in tables 1-2 may, to a certain degree, need to be adjusted upwards or downwards.

Selection guides tables 1-2.

The following can be read off from the selection tables:

- Chilled beam's length (m)
- Water cooling capacity P_L(W)
- Pressure drop constant

Units of measurment

Capacity in W, kW

Room temperature °C t_r:

Mean water temperature °C t_m:

Velocity m/s v:

Flow I/s q:

p: Pressure Pa, kPa

 Δp : Pressure drop Pa, kPa

 ΔT_{m} : Temperature difference [t,-t_] °C

Temperature difference between supply-return, °C ΔΤ:

Supplemental index: k = Cooling

The pressure drop on the water side is calculated according to the formula:

 $\Delta \mathbf{p}_{k} = (\mathbf{q}_{k} / \mathbf{k}_{\mathbf{p}k})^{2} [\mathbf{kPa}]$ where:

 $\Delta p_{\nu} = \text{The pressure drop in the water cirkuit (kPa)}$

 q_{ν} = The water flow (I/s), taken from Diagram 1

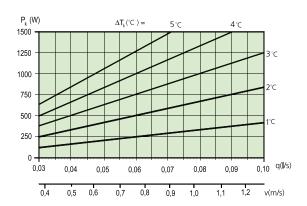
 k_{pk} = Pressure constant

Recommended limit values -Water

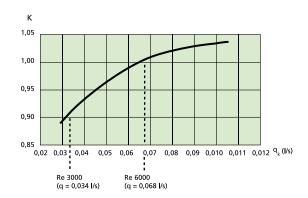
Max. recommended working pressure: 1600 kPa Max. recommended test pressure when 2400 kPa

testing the completed installation:

Min. cooling water flow: 0.03 l/s 2-5°C Temperate increase cooling water:


Min. supply temperature: Should always be

selected so that the system works without


condensation.

Ensures that any air in the system can be expelled at the minimum water flow rate per circuit.

Diagram 1. Water flow - cooling effect.

Diagram 2. Water flow - capacity correction.

K = capacity correction factor for FRB 290 and FRB 430.

Table 1. Data - cooling. Selection guide FRB 290.

Unit's length		Cooling capacity water (W)						k _{pk}	
m	ΔT_{mv}	6	7	8	9	10	11	12	
1,2		81	102	125	147	168	190	213	0,0371
1,5		108	136	162	188	216	245	273	0,0339
1,8		137	167	198	230	264	299	334	0,0314
2,1		162	197	234	272	312	353	395	0,0294
2,4		186	227	270	314	360	408	455	0,0277
2,7		211	257	306	356	408	462	516	0,0263
3,0		236	288	342	398	456	516	577	0,0251
3,3		261	318	378	439	503	570	637	0,0240
3,6		286	348	414	481	551	625	698	0,0231
3,9		310	379	450	523	599	679	759	0,0223

Table 2. Data - cooling. Selection guide FRB 430.

Unit's length		Cooling capacity water (W)						k _{pk}	
m	ΔT_{mv}	6	7	8	9	10	11	12	
1,2		130	162	195	230	266	303	342	0,0300
1,5		169	209	251	295	342	390	440	0,0275
1,8		206	255	307	361	418	476	537	0,0255
2,1		244	301	362	426	493	563	635	0,0239
2,4		281	348	418	492	569	649	732	0,0225
2,7		318	394	474	558	645	736	830	0,0214
3,0		356	440	530	623	721	822	927	0,0204
3,3		393	487	585	689	797	909	1025	0,0195
3,6		431	533	641	754	872	995	1122	0,0188
3,9		468	579	697	820	948	1082	1220	0,0181

For variants with a connection section the capacity data is read for the closest previous length. Example: The cooling capacity for FRB 290 - 2.1 m with connection section is read in the table 1 for length 1.8 m

Pressure drop diagram

Diagram 3. FRB 290: pressure drop $\Delta p_k(kPa)$ in the cooling circuit as a function of the cooling water flow $q_k(l/s)$ and unit's length.

Diagram 4. FRB 430: pressure drop $\Delta p_k(kPa)$ in the cooling circuit as a function of the cooling water flow $q_k(l/s)$ and unit's length.

Diagram 3. FRB 290, pressure drop - water flow.

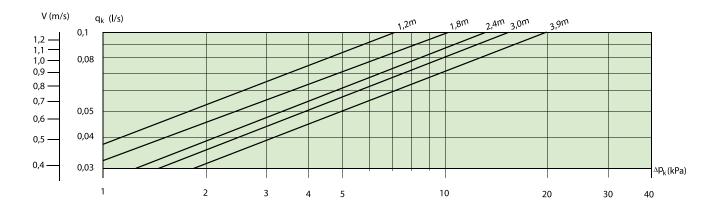
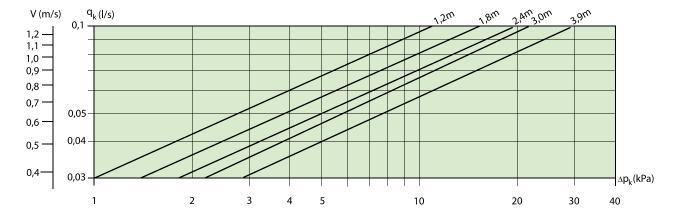



Diagram 4. FRB 430, pressure drop - water flow.

Circulation air openings

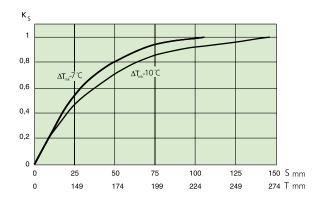

Diagram 5. FRB 290 - the relation between the circulation air openings and the output. The cooling capacity is corrected according to the size of the circulation openings as per the following $P = P_{table1} \cdot K$.

Diagram 6. FRB 430 - the relation between the circulation air openings and the output. The cooling capacity is corrected according to the size of the circulation openings as per the following $P = P_{table2} \cdot K$.

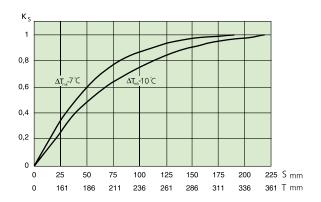

S

Figure 5. Circulation air openings. With circulation air measurement from one side only the opening "S" is increased by 1.5 times.

Diagram 5. FRB 290, reduction factor

Diagram 6. FRB 430, reduction factor

S = Ceiling spacing

T = Total installation height including circulation air gap

 k_{c} = Effect reduction factor

The ceiling spacing is valid when there is circulation air from two sides. When there is circulation air only from one side the same effect reduction factors is applied if the ceiling spacing is increased 1,5 times.

FRB

Example FRB 430

The new tenant changes the activities in the building and requires more cooling than the existing ventilation system can provide. The additional cooling requirement is 2600 W

Planned room temperature: 25°C

Cooling water temperature: 14/17 gives: $\Delta T_{\nu} = 3^{\circ}\text{C}$; $\Delta T_{m\nu}$

= 9.5°C

SOLUTION

Cooling capacity

Table 2 gives for the length 3.0 m cooling effect 672 W (at $\Delta T_{mk} = 9.5$ °C). A requirement of 2600 W requires 2600 / 672 = 4 three metre lengths. A selection of 4 x FRB 430 - 3.0 is made.

Cooling water

With the cooling capacity requirement 2600 / 4 = 650 W per three metre length, the requisite water flow is read off from **Diagram 1**. With the temperature increase $\Delta T_k = 3^{\circ}\text{C}$ the water flow 0.052 l/s is given.

The pressure drop is calculated based on the water flow 0.052 l/s and the pressure drop constant $k_{pk} = 0.0204$, which is taken from **Table 2**. The pressure drop is then: $\Delta p_k = (q_k / k_{pk})^2 = (0.052 / 0.0204)^2 = 6,5 \text{ kPa}.$

Solution

Select four 3.0 metre long FRB 430 to be installed at least 210 mm from the ceiling to obtain a sufficiently large gap for the circulated air (shown in **Diagram 6**)

Dimensions

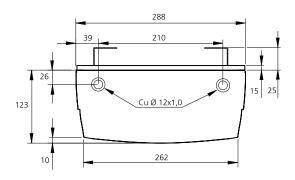


Figure 6. FRB 290, end view.

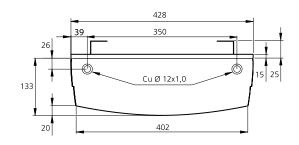


Figure 7.FRB 430, end view.

Length FRB

Nominal size FRB 290 and FRB 430 (m) :	1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3.0, 3.3, 3.6 and 3.9 m.			
Length FRB 290 Length FRB 430	Nominal - 28 mm. (+4/-2) Nominal - 12 mm. (+4/-2)			
Size of lower section's subdivision $L_{ii} = L/2$				

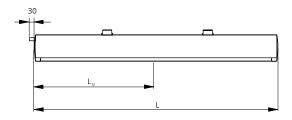


Figure 8. Connection -H, side view. L = length FRB Lu = length of lower section's subdivision

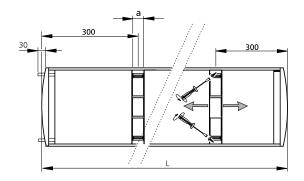


Figure 9. Horizontal connection at the end -H, top view. $a = adjustment \ allowance \ suspension \ fittings \ 43 \ mm.$

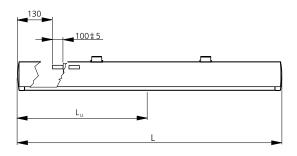


Figure 10. Connection -I, side view. L = length FRB Lu = length of lower section's subdivision

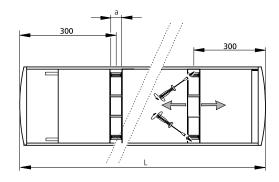


Figure 11. Connection -I, top view. a = adjustment allowance suspension fittings 43 mm.

Installation measurements

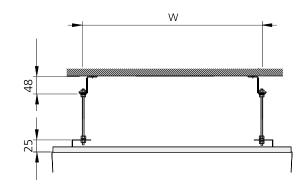


Figure 12. Assembly fittings SYST MS. FRB 290: W = 186 mm FRB 430: W = 326 mm

Limits of contract

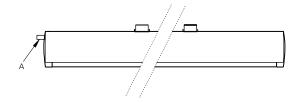
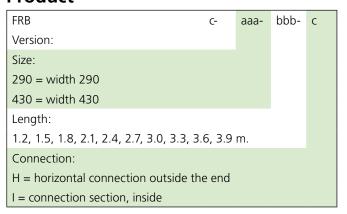


Figure 13. Connection, side view. A = cooling: the plumbing contractor connections to pipe Cu 12 x 1.0 mm

Specification

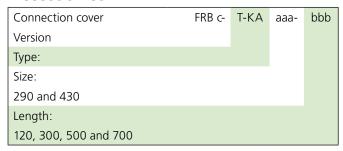

Cooling system type FRB for cooling. The units are supplied enamelled in Swegon white standard colour RAL 9003 gloss value $30 \pm 6\%$.

Limits of contract

Swegon limits of contract are at the connection points for water (in accordance with the **figure 13** under Dimensions - Limits of contract/connection points). At these connection points the plumbing contractor connects to plain pipe ends, fills the system, vents and carries out pressure testing.

The units are supplied exclusive of assembly kits. These are to be ordered separately.

Product


Weight

Weight per metre FRB 290			
Dry weight	5.0 kg/m		
Weight, water-filled	5.5 kg/m		

Weight per metre FRB 430				
Dry weight	7.3 kg/m			
Weight, water-filled	8.0 kg/m			

Accessories

Loose endplates	FRBT GL a	aa- bbb
UH = without hole MH = with hole		
Size: 290, 430		

Extension pipe, 2	SYST FR	aaa
Length: 300 or 430 mm		

Assembly set	SYST MS M8	aaaa-	b-	RAL9003
For suspended installa	ition			
Length drop rod:				
200, 500, 1000 mm				
1 = only the drop rod				
2 = double drop rods	with tread lock			

Flexible connection hose (1)	SYST FH F1	aaa-	12
compression ring on pipe (Ø12 mm)			
Length:			
300, 500 and 700 mm			

Flexible connection hose (1)	SYST FH F20	aaa-	12
Push-on coupling (Ø12 mm) against pipe on both ends			
Length:			
275, 475 and 675 mm			

Flexible connection hose (1)	SYST FH F30	aaa-	12
Push-on coupling (Ø12 mm) against a pipe on the one end, a G20ID sleeve nut on the other en	d.		
Length:			
200, 400 and 600 mm			

Explanatory text

Example of the explanatory text.

Swegon passive chilled beam FRB for individually suspended installation on ceilings, with the following functions:

- Cooling
- For individually suspended installation
- Connection section (optional)
- · Low build-in height
- Sliding lower section
- The units delivered enamelled in white standard finish RAL 9003
- Limit of contract at connection points for water according to principal drawing.
- At connection points the plumbing contractor connects to plain pipe ends, cooling 12 x1.0 mm.
- The plumbing contractor fills, vents and pressure tests and bears responsibility that the planned water flow reaches each system branch and beam.

Accessories:

- Assembly set SYST MS M8 aaaa b RAL9003 xx, qty
- Flexible connection hose SYST FH F1 aaa- 12 xx, qty etc.

Size:

KB XX-1 FRB c - aaa - bbb - c xx, qty KB XX-1 FRB c - aaa - bbb - c xx, qty etc

 Control equipment, see separate section in the catalogue Indoor Climate Systems