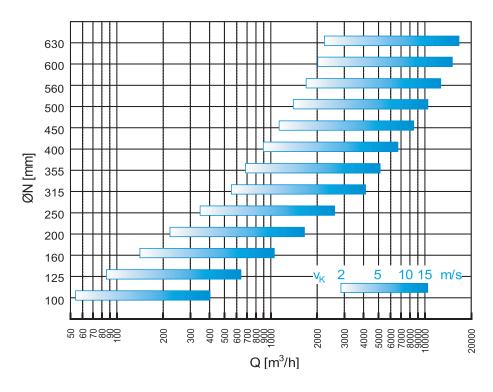
MP MESSEINRICHTUNG

Versionen

MP/C (rund)


MP/R (rechteckig)

Die Volumenstrommesseinrichtungen MP sind Geräte zur Messung des Volumenstroms, der einen Kanalabschnitt durchquert. Hergestellt mit einem runden oder rechteckigen verzinkten Stahlrahmen (auf Anfrage in Edelstahl), ausgestattet mit einem oder mehreren Geschwindigkeitsmessgeräten aus extrudiertem Aluminium mit Flügelprofil. Die Messung kann über ein Differentialmanometer (nicht im Lieferumfang enthalten), das an beide Druckmessanschlüsse angeschlossen ist, erfolgen. Die Messung der Druckdifferenz ist an den Volumenstrom, der durch die Messeinrichtung strömt, gekoppelt.

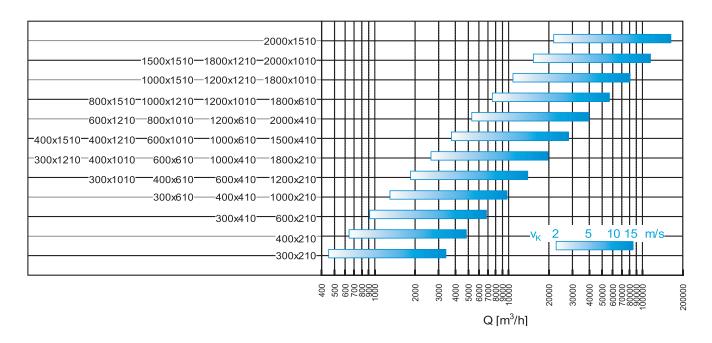

Die Volumenstrommesseinrichtung kann mit einem Druckfühler, der ein elektrisches Signal ausgibt, ausgestattet werden (DC 2...10 V oder 0...10 V).

Tabelle zur Schnellauswahl MP/C

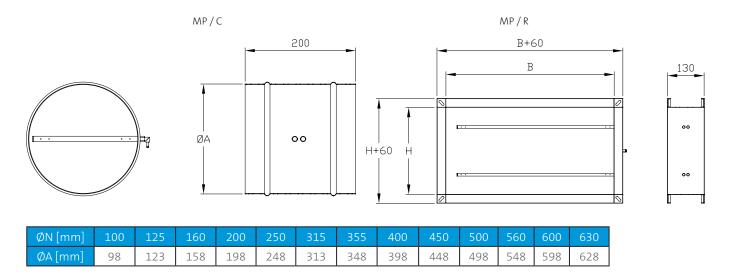
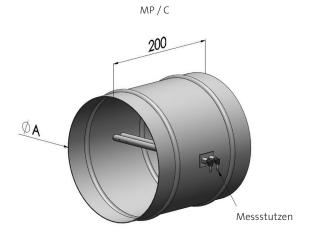
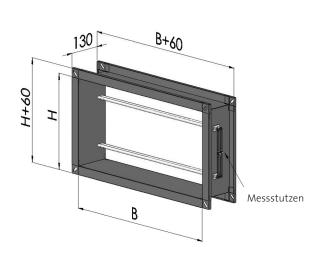


Tabelle zur Schnellauswahl MP/R




ABMESSUNGEN

Abmessungen im Querschnitt

Abmessungen in 3D

MP/R

Ausführung

In der Standardausführung sind die Rahmen der Volumenstrommesseinrichtungen der Serie MP aus verzinktem Stahl (Edelstahl auf Anfrage) und die Druckfühler aus extrudiertem Aluminium.

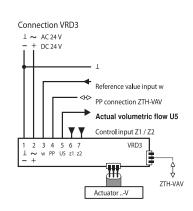
Standardabmessungen

MP/R

Für B von min. 200 mm bis max. 2000 mm in Abstufungen von 100 mm Für H von min. 210 mm bis max. 1510 mm in Abstufungen von 100 mm

MP/C

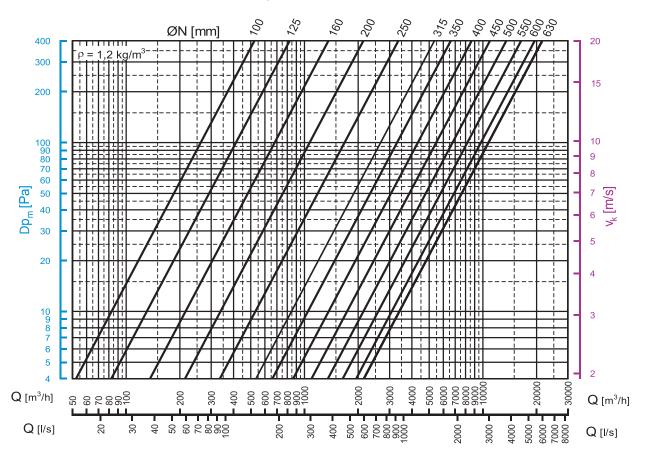
- \emptyset N mm 100, 125, 160, 200, 250, 315, 355, 400, 450, 500, 560, 600, 630. Sonderabmessungen auf Anfrage


ZUBEHÖR

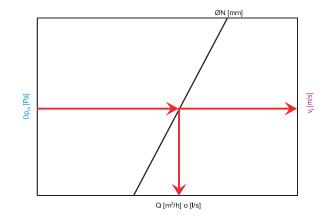
VRD3 – Regler und Sensor als kompakte Einheit

Druckfühler, der ein elektrisches Signal ausgibt DC 0...10 V

Elektrischer Anschluss


TECHNISCHE DATEN

Druckverlust MP/C


Freier Querschnitt S [m²]

ØN [mm]	100	125	160	200	250	315	355	400	450	500	560	600	630
S [m ²]	0,0075	0,0119	0,0196	0,0308	0,0483	0,0769	0,0951	0,1244	0,1576	0,1948	0,2359	0,2809	0,3097

Diagramm Druckverlust

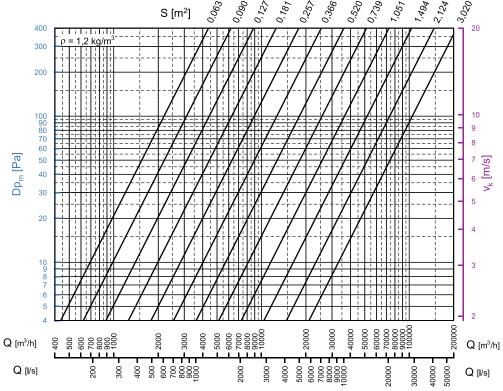
Funktionsschema des Diagramms

Legende

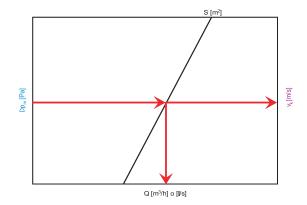
 $\begin{array}{ll} Q \left[m^3/h\right] & \text{Volumenstrom} \\ S \left[m^2\right] & \text{freier Querschnitt} \\ v_k \left[m/s\right] & \text{Strömungsgeschwindigkeit} \\ \Delta p \left[Pa\right] & \text{Gesamtdruckverlust} \end{array}$

Mathematische Formel zur Berechnung des Volumenstromes Q:

$$Q = S \times 3600 \times \sqrt{\frac{Dp_m}{0.86}}$$


Q [m³/h], S [m²], Dp_m [Pa]

Druckverlust MP/R


Freier Querschnitt [m²]

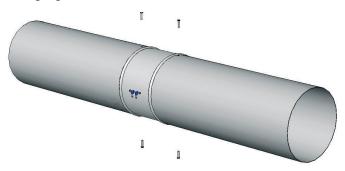
H∖B	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000
210	0,063	0,084	0,105	0,126	0,147	0,168	0,189	0,21	0,231	0,252	0,273	0,294	0,315	0,336	0,357	0,378	0,399	0,42
310	0,093	0,124	0,155	0,186	0,217	0,248	0,279	0,31	0,341	0,372	0,403	0,434	0,465	0,496	0,527	0,558	0,589	0,62
410	0,123	0,164	0,205	0,246	0,287	0,328	0,369	0,41	0,451	0,492	0,533	0,574	0,615	0,656	0,697	0,738	0,779	0,82
510	0,153	0,204	0,255	0,306	0,357	0,408	0,459	0,51	0,561	0,612	0,663	0,714	0,765	0,816	0,867	0,918	0,969	1,02
610	0,183	0,244	0,305	0,366	0,427	0,488	0,549	0,61	0,671	0,732	0,793	0,854	0,915	0,976	1,037	1,098	1,159	1,22
710	0,213	0,284	0,355	0,426	0,497	0,568	0,639	0,71	0,781	0,852	0,923	0,994	1,065	1,136	1,207	1,278	1,349	1,42
810	0,243	0,324	0,405	0,486	0,567	0,648	0,729	0,81	0,891	0,972	1,053	1,134	1,215	1,296	1,377	1,458	1,539	1,62
910	0,273	0,364	0,455	0,546	0,637	0,728	0,819	0,91	1,001	1,092	1,183	1,274	1,365	1,456	1,547	1,638	1,729	1,82
1010	0,303	0,404	0,505	0,606	0,707	0,808	0,909	1,01	1,111	1,212	1,313	1,414	1,515	1,616	1,717	1,818	1,919	2,02
1110	0,333	0,444	0,555	0,666	0,777	0,888	0,999	1,11	1,221	1,332	1,443	1,554	1,665	1,776	1,887	1,998	2,109	2,22
1210	0,363	0,484	0,605	0,726	0,847	0,968	1,089	1,21	1,331	1,452	1,573	1,694	1,815	1,936	2,057	2,178	2,299	2,42
1310	0,393	0,524	0,655	0,786	0,917	1,048	1,179	1,31	1,441	1,572	1,703	1,834	1,965	2,096	2,227	2,358	2,489	2,62
1410	0,423	0,564	0,705	0,846	0,987	1,128	1,269	1,41	1,551	1,692	1,833	1,974	2,115	2,256	2,397	2,538	2,679	2,82
1510	0,453	0,604	0,755	0,906	1,057	1,208	1,359	1,51	1,661	1,812	1,963	2,114	2,265	2,416	2,567	2,718	2,869	3,02

Diagramm Druckverlust

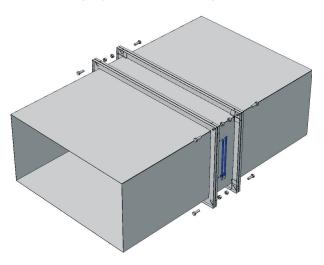
Funktionsschema des Diagramms

 $\begin{array}{ll} Q\ [m^3/h]\ oder\ [l/s] & Volumenstrom \\ S\ [m^2] & freier\ Querschnitt \\ v_k\ [m/s] & Strömungsgeschwindigkeit \\ \Delta p\ [Pa] & Gesamtdruckverlust \end{array}$

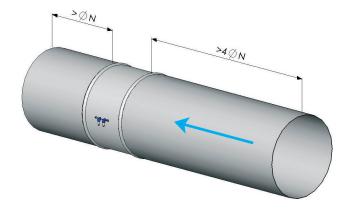
Mathematische Formel zur Berechnung des Volumenstromes Q:


$$Q = S \times 3600 \times \sqrt{\frac{Dp_m}{0,86}}$$

 $Q[m^3/h]$, $S[m^2]$, $Dp_m[Pa]$


BEFESTIGUNGSSYSTEME

Befestigungsarten


Verbindung mit dem Rundrohr: Befestigung mit Schrauben (oder Nieten)

Verbindung mit dem rechteckigen Kanal: Befestigung mit Schrauben (Längsschlitze in den 4 Ecken)

Empfohlene Position im Kanal

